Konfigurasyon

Cuckoo, birkag¢ ana yapilandirma dosyasina dayanir:

e cuckoo.conf: genel davranis ve analiz seceneklerini yapilandirmak icin.

e auxiliary.conf: yardimci moddlleri etkinlestirmek ve yapilandirmak icin.

e <machinery>.conf: sanallastirma yaziliminizin secgeneklerini tanimlamak icin
(cuckoo.conf'da sectiginiz makine modulinun ayni adini tasiyan dosya).

e memory.conf: Volatility yapilandirmasi.

e processing.conf; isleme modullerini etkinlestirmek ve yapilandirmak icin.

e reporting.conf: rapor formatlarini etkinlestirmek veya devre disi birakmak icin.

Cuckoo'yu calistirmak icin en azindan cuckoo.conf ve <machinery>.conf dosyalarini dizenlemeniz
gerekmektedir.

cuckoo.conf

Duzenlenmesi gereken ilk dosya $CWD/conf/cuckoo.conf 'dur. $CWD 'den bahsederken Cuckoo
Working Directory'ye atifta bulunacagiz. cuckoo.conf dosyasi, Cuckoo'yu baslatmadan énce kontrol
etmek veya en azindan kendinizi tanimak isteyeceginiz genel yapilandirma seceneklerini icerir.

Dosya buyuk 6élctide aciklamali ve kendini aciklayicidir, ancak bazi secenekler 6zellikle dikkatinizi
cekebilir:

e [cuckoo] icindeki machinery: Bu secenek, Cuckoo'nun analiz makinelerinizle etkilesim
kurmak icin hangi Machinery modulunu kullanmasini istediginizi tanimlar. Deger, moddul
adinin uzantisi olmadan (6rnegin, virtualbox veya vmware) olmalidir.

e [resultserver] icindeki ip ve port: Bu, Cuckoo'nun sonuc¢ sunucusunu baglamaya calisacagi
yerel IP adresini ve portunu tanimlar. Analiz makinelerinizin ag yapilandirmasiyla
eslestiginden emin olun, aksi takdirde sonuclari iletemezler.

e [database] icindeki connection : Veritabani baglanti dizesi, Cuckoo'nun i¢ veritabanina nasil

baglanacagini tanimlar. SQLAIchemy tarafindan desteklenen herhangi bir DBMS'yi, gecerli

bir Database Urls sozdizimini kullanarak kullanabilirsiniz."

Resultserver IP'nizi kontrol edin! Bazi sanallastirma yazilimlari (6rnegin, Virtualbox) sanal bir
makine baslatilana kadar sanal ad arayuzlerini devreye almaz. Cuckoo, resultserver'i
bagladiginiz araylziin baslamasindan once etkinlestirmelidir, bu nedenle Iltfen ag
yapilandirmanizi kontrol edin. Arayldzu nasil etkinlestireceginizden emin degilseniz, iyi bir
ipucu, bir analiz sanal makinesini manuel olarak baslatip durdurmanizdir; bu, sanal aglar
devreye alacaktir. Aginizda NAT/PAT kullaniyorsaniz, resultserver IP'sini tim araylzlerde
dinlemek icin 0.0.0.0 olarak ayarlayabilir, ardindan <machinery>.conf'daki resultserver_ip

http://www.sqlalchemy.org/
https://docs.sqlalchemy.org/en/20/core/engines.html#database-urls

ve resultserver_port seceneklerini kullanarak her makinenin goérdiglu adresi ve portu
belirtmek icin 6zel secenekleri kullanabilirsiniz. Unutmayin ki eger cuckoo.conf'de
resultserver IP'sini 0.0.0.0 olarak ayarlarsaniz, tim sanal makineler icin resultserver ip'yi
ayarlamaniz gerekecektir.

auxiliary.conf

Auxiliary moduller, malware analizi ile es zamanl olarak calisan betiklerdir; bu dosya, bu
modullerin seceneklerini tanimlar.

Asagida varsayillan $CWD/conf/auxiliary.conf dosyasi bulunmaktadir:

[sniffer]
Enable or disable the use of an external sniffer (tcpdump) [yes/nol.
enabled = yes

Specify the path to your local installation of tcpdump. Make sure this
path is correct.
tcpdump = /usr/sbin/tcpdump

We used to define the network interface to capture on in auxiliary.conf, but
this has been moved to the "interface" field of each Virtual Machinery
configuration.

Specify a Berkeley packet filter to pass to tcpdump.

Note: packer filtering is not possible when using "nictrace" functionality
from VirtualBox (for example dumping inter-VM traffic).

bpf =

[mitm]
Enable man in the middle proxying (mitmdump) [yes/no].
enabled = no

Specify the path to your local installation of mitmdump. Make sure this
path is correct.
mitmdump = /usr/local/bin/mitmdump

Listen port base. Each virtual machine will use its own port to be

able to make a good distinction between the various running analyses.
Generally port 50000 should be fine, in this case port 50001, 50002, etc
will also be used - again, one port per analyses.

port_base = 50000

Script file to interact with the network traffic. Please refer to the

documentation of mitmproxy/mitmdump to get an understand of their internal
workings. (https://mitmproxy.org/doc/scripting/inlinescripts.html)

script = stuff/mitm.py

Path to the certificate to be used by mitmdump. This file will be

automatically generated for you if you run mitmdump once. It's just that

you have to copy it from ~/.mitmproxy/mitmproxy-ca-cert.p12 to somewhere
in the analyzer/windows/ directory. Recommended is to write the certificate
to analyzer/windows/bin/cert.p12, in that case the following option should

be set to bin/cert.pl2.

certificate = bin/cert.p12

[replay]
Enable PCAP replay capabilities.
enabled = yes

Specify the path to your local installation of mitmdump. Make sure this
path is correct. Note that this should be mitmproxy 3.0.5 or higher,

installed in a separate virtualenv (or similar).

mitmdump = /usr/local/bin/mitmdump

Listen port base. Each virtual machine will use its own port to be

able to make a good distinction between the various running analyses.
Generally port 51000 should be fine, in this case port 51001, 51002, etc
will also be used - again, one port per analyses.

port_base = 51000

Path to the certificate to be used by mitmdump. This file will be

automatically generated for you if you run mitmdump once. It's just that

you have to copy it from ~/.mitmproxy/mitmproxy-ca-cert.p1l2 to somewhere
in the analyzer/windows/ directory. Recommended is to write the certificate
to analyzer/windows/bin/cert.p12, in that case the following option should

be set to bin/cert.p12.

certificate = bin/cert.pl2

[services]

Provide extra services accessible through the network of the analysis VM
provided in separate, standalone, Virtual Machines [yes/no].

enabled = no

Comma-separated list with each Virtual Machine containing said service(s).
services = honeyd

Time in seconds required to boot these virtual machines. E.g., some services
will only get online after a minute because initialization takes a while.
timeout = 0

[reboot]
This auxiliary module should be enabled for reboot analysis support.
enabled = yes

<machinery>.conf

Machinery moddulleri, Cuckoo'nun tercih ettiginiz sanallastirma yazilimi ile nasil etkilesimde
bulunmasi gerektigini tanimlayan betiklerdir.

Her modul, mevcut makineler hakkinda ayrintilari tanimlayan bir yapilandirma dosyasina sahiptir.
Ornegin, Cuckoo, bir VMWare machinery moduli ile birlikte gelir. Onu kullanmak icin
$CWD/conf/cuckoo.conf ~ dosyasinda machinery secenegini vmware olarak belirtmek ve
$CWD/conf/vmware.conf dosyasini kullanilabilir Sanal Makinelerle doldurmak gereklidir.

Cuckoo, varsayilan olarak bazi moduller saglar ve bu kilavuzun kapsaminda, VirtualBox'u
kullanacaginizi varsayacagiz.

Asadida varsayilan $CWD/conf/virtualbox.conf dosyasi bulunmaktadir:

[virtualbox]

Specify which VirtualBox mode you want to run your machines on.
Can be "qgui" or "headless". Please refer to VirtualBox's official

documentation to understand the differences.

mode = headless

Path to the local installation of the VBoxManage utility.

path = /usr/bin/VBoxManage

If you are running Cuckoo on Mac OS X you have to change the path as
follows:

path = /Applications/VirtualBox.app/Contents/MacOS/VBoxManage

Default network interface.
interface = vboxnet0

Specify a comma-separated list of available machines to be used. For each
specified ID you have to define a dedicated section containing the details
on the respective machine. (E.g. cuckool,cuckoo2,cuckoo3)

machines = cuckool

If remote control is enabled in cuckoo.conf, specify a port range to use.
Virtualbox will bind the VRDP interface to the first available port.
controlports = 5000-5050

[cuckool]

Specify the label name of the current machine as specified in your
VirtualBox configuration.

label = cuckool

Specify the operating system platform used by current machine
[windows/darwin/linux].
platform = windows

Specify the IP address of the current virtual machine. Make sure that the
|IP address is valid and that the host machine is able to reach it. If not,

the analysis will fail.

ip =192.168.56.101

(Optional) Specify the snapshot name to use. If you do not specify a snapshot
name, the VirtualBox MachineManager will use the current snapshot.

Example (Snapshotl is the snapshot name):

shapshot =

(Optional) Specify the name of the network interface that should be used

when dumping network traffic from this machine with tcpdump. If specified,
overrides the default interface specified in auxiliary.conf

Example (vboxnetO is the interface name):

interface =

(Optional) Specify the IP of the Result Server, as your virtual machine sees it.
The Result Server will always bind to the address and port specified in
cuckoo.conf,

however you could set up your virtual network to use NAT/PAT, so you can
specify here

the IP address for the Result Server as your machine sees it. If you don't
specify an

address here, the machine will use the default value from cuckoo.conf.

NOTE: if you set this option you have to set result server IP to 0.0.0.0 in
cuckoo.conf.

Example:

resultserver_ip =

(Optional) Specify the port for the Result Server, as your virtual machine sees
it.

The Result Server will always bind to the address and port specified in
cuckoo.conf,

however you could set up your virtual network to use NAT/PAT, so you can
specify here

the port for the Result Server as your machine sees it. If you don't specify a
port

here, the machine will use the default value from cuckoo.conf.

Example:

resultserver_port =

(Optional) Set your own tags. These are comma separated and help to identify
specific VMs. You can run samples on VMs with tag you require.
tags =

Mostly unused for now. Please don't fill it out.
options =

(Optional) Specify the OS profile to be used by volatility for this

virtual machine. This will override the guest_profile variable in

memory.conf which solves the problem of having multiple types of VMs
and properly determining which profile to use.

osprofile =

[honeyd]

For more information on this VM please refer to the "services" section of

the conf/auxiliary.conf configuration file. This machine is a bit special

in the way that its used as an additional VM for an analysis.

NOTE that if this functionality is used, the VM should be registered in

the "machines" list in the beginning of this file.

label = honeyd

platform = linux

ip=192.168.56.102

The tags should at least contain "service" and the name of this service.

This way the services auxiliary module knows how to find this particular VM.
tags = service, honeyd

Not all services actually have a Cuckoo Agent running in the VM, for those
services one can specify the "noagent" option so Cuckoo will just wait until
the end of the analysis instead of trying to connect to the non-existing

Cuckoo Agent. We can't really intercept any inter-VM communication from the
host / gateway so in order to dump traffic between VMs we have to use a

different network dumping approach. For this machine we use the "nictrace"
functionality from VirtualBox (which is basically their internal tcpdump)

and thus properly dumps inter-VM traffic.

options = nictrace noagent

Diger machinery moddlleri icin yapilandirma genellikle ayni gérinmektedir, gerektiginde bazi
degisikliklerle birlikte. Ornegin, XenServer bir APl araciligiyla calistigindan, ona erisim saglamak icin
bir URL ve kimlik bilgileri gereklidir.

Secenekler icin yapilan yorum satirlari yeterince aciklayicidir.

Asadida varsayilan $CwWD/conf/kvm.conf dosyasi bulunmaktadir:

[kvm]
Specify a libvirt URI connection string
dsn = gemu:///system

Specify a comma-separated list of available machines to be used. For each
specified ID you have to define a dedicated section containing the details
on the respective machine. (E.g. cuckool,cuckoo2,cuckoo3)

machines = cuckool

Specify the name of the default network interface that will be used
when dumping network traffic with tcpdump.

Example (virbr0 is the interface name):

interface = virbr0

[cuckool]

Specify the label name of the current machine as specified in your
libvirt configuration.

label = cuckool

Specify the operating system platform used by current machine
[windows/darwin/linux].
platform = windows

Specify the IP address of the current virtual machine. Make sure that the
IP address is valid and that the host machine is able to reach it. If not,

the analysis will fail. You may want to configure your network settings in
/etc/libvirt/<hypervisor>/networks/

ip=192.168.122.101

(Optional) Specify the snapshot name to use. If you do not specify a snapshot
name, the KVM MachineManager will use the current snapshot.

Example (Snapshotl is the snapshot name):

snapshot =

(Optional) Specify the name of the network interface that should be used
when dumping network traffic from this machine with tcpdump.

Example (virbr0 is the interface name):
interface =

(Optional) Specify the IP of the Result Server, as your virtual machine sees it.
The Result Server will always bind to the address and port specified in
cuckoo.conf,

however you could set up your virtual network to use NAT/PAT, so you can
specify here

the IP address for the Result Server as your machine sees it. If you don't
specify an

address here, the machine will use the default value from cuckoo.conf.

NOTE: if you set this option you have to set result server IP to 0.0.0.0 in
cuckoo.conf.

Example:

resultserver_ip =

(Optional) Specify the port for the Result Server, as your virtual machine sees
it.

The Result Server will always bind to the address and port specified in
cuckoo.conf,

however you could set up your virtual network to use NAT/PAT, so you can
specify here

the port for the Result Server as your machine sees it. If you don't specify a
port

here, the machine will use the default value from cuckoo.conf.

Example:

resultserver_port =

(Optional) Set your own tags. These are comma separated and help to identify
specific VMs. You can run samples on VMs with tag you require.
tags =

(Optional) Specify the OS profile to be used by volatility for this

virtual machine. This will override the guest_profile variable in

memory.conf which solves the problem of having multiple types of VMs
and properly determining which profile to use.

osprofile =

memory.conf

Volatility araci, bellek dékim analizi icin bUyuk bir eklenti seti sunar. Bunlardan bazilari oldukca
yavastir. $CwbD/conf/volatility.conf dosyasi, istege bagl olarak eklentileri etkinlestirmenize veya devre
disi birakmaniza olanak tanir. Volatility'i kullanmak icin iki adimi takip etmelisiniz:

e $CWD/conf/processing.conf dosyasinda volatility'yi etkinlestirin.
e $CWD/conf/cuckoo.conf dosyasinda memory_dump'i etkinlestirin.

$CWD/conf/memory.conf dosyasinin temel bdliminde, Volatility profili ve bellek ddékimlerinin
islendikten sonra silinip silinmeyecegini (bu, c¢ok miktarda disk alani tasarrufu saglar)
yapilandirabilirsiniz:

Basic settings

[basic]

Profile to avoid wasting time identifying it
guest_profile = WinXPSP2x86

Delete memory dump after volatility processing.
delete_memdump = no

Sonrasinda, her eklentinin kendi yapilandirma bolimu bulunmaktadir:

Scans for hidden/injected code and dlls

http://code.google.com/p/volatility/wiki/CommandReference#malfind
[malfind]

enabled = on

filter = on

Lists hooked api in user mode and kernel space

Expect it to be very slow when enabled

http://code.google.com/p/volatility/wiki/CommandReference#apihooks
[apihooks]

enabled = off

filter = on

Filtre yapilandirmasi, sonug¢ raporundan bilinen temiz veriyi kaldirmaniza yardimci olur. Her eklenti
icin ayri ayr yapilandirilabilir.

Filtre kendisi [mask] béliumunde yapilandirlir. pid_generic iginde surecleri filtrelemek icin pid'lerin
bir listesini girebilirsiniz:

Masks. Data that should not be logged

Just get this information from your plain VM Snapshot (without running
malware)

This will filter out unwanted information in the logs

[mask]

pid_generic: a list of process ids that already existed on the machine before
the malware was started.

pid_generic = 4, 680, 752, 776, 828, 840, 1000, 1052, 1168, 1364, 1428, 1476,
1808, 452, 580, 652, 248, 1992, 1696, 1260, 1656, 1156

processing.conf

Bu dosya, tum isleme moddullerini etkinlestirmenize, devre disi birakmaniza ve yapilandirmaniza
olanak tanir. Bu moduller, cuckoo.processing modull altinda bulunur ve analiz sirasinda toplanan
ham verilerin nasil islenecegini tanimlar.

$CWD/conf/processing.conf dosyasinda her isleme moduli icin bir bdlim bulacaksiniz.

Enable or disable the available processing modules [yes/no].

If you add a custom processing module to your Cuckoo setup, you have to add
a dedicated entry in this file, or it won't be executed.

You can also add additional options under the section of your module and

they will be available in your Python class.

[analysisinfo]
enabled = yes

[apkinfo]

enabled = no

Decompiling dex files with androguard in a heavy operation. For large dex
files it can really take quite a while - it is recommended to limit to a

certain filesize.

decompilation_threshold = 5000000

[baseline]
enabled = no

[behavior]
enabled = yes

[buffer]
enabled = yes

[debug]
enabled = yes

[droidmon]
enabled = no

[dropped]
enabled = yes

[dumptls]
enabled = yes

[extracted]
enabled = yes

[googleplay]
enabled = no
android_id =
google_login =
google_password =

[memory]

Create a memory dump of the entire Virtual Machine. This memory dump will
then be analyzed using Volatility to locate interesting events that can be

extracted from memory.

enabled = no

[misp]
enabled = no
url =

apikey =

Maximum amount of IOCs to look up (hard limit).
maxioc = 100

[network]
enabled = yes

Allow domain whitelisting
whitelist_dns = no

Allow DNS responses from your configured DNS server for whitelisting to
deactivate when responses come from some other DNS

Can be also multiple like : 8.8.8.8,8.8.4.4

allowed_dns =

[procmemory]

Enables the creation of process memory dumps for each analyzed process
right

before they terminate themselves or right before the analysis finishes.
enabled = yes

It is possible to load these process memory dumps in IDA Pro through the
generation of IDA Python-based script files. Although currently symbols and
such are not properly recovered, it is still nice to get a quick look at

specific memory addresses of a process.

idapro = no

Extract executable images from this process memory dump. This allows us to
relatively easily extract injected executables.

extract img = yes

Also extract DLL files from the process memory dump.

extract_dll = no

Delete process memory dumps after analysis to save disk space.
dump_delete = no

[procmon]

Enable procmon processing. This only takes place when the "procmon=1"
option

is set for an analysis.

enabled = yes

[screenshots]

enabled = yes

Set to the actual tesseract path (i.e., /usr/bin/tesseract or similar)
rather than "no" to enable OCR analysis of screenshots.

Note: doing OCR on the screenshots is a rather slow process.
tesseract = no

[snort]

enabled = no

Following are various configurable settings. When in use of a recent 2.9.x.y
version of Snort there is no need to change any of the following settings as
they represent the defaults.

#

snort = /usr/local/bin/snort

conf = /etc/snort/snort.conf

[static]

enabled = yes

On bigger PDF files PeePDF may take a substantial amount of time to perform
static analysis of PDF files, with times of over an hour per file estimated

in production. This option will by default limit the maximum processing time
to one minute, but this may be adjusted accordingly. Note that if the timeout
is hit, no static analysis results through PeePDF will be available.

pdf timeout = 60

[strings]
enabled = yes

[suricatal
enabled = no

Following are various configurable settings. When in use of a recent version
of Suricata there is no need to change any of the following settings as they
represent the defaults.

suricata = /usr/bin/suricata

conf = /etc/suricata/suricata.yaml

eve_log = eve.json

files log = files-json.log

files_dir = files

By specifying the following line our processing module can use the socket
mode in Suricata. This is quite the performance improvement as instead of
having to load all the Suricata rules for each time the processing module is
ran (i.e., for every task), the rules are only loaded once and then we talk

to its API. This does require running Suricata as follows or similar;

"suricata --unix-socket -D".

(Please find more information in utils/suricata.sh for now).

socket = /var/run/suricata/cuckoo.socket

socket =

[targetinfo]
enabled = yes

[virustotal]

enabled = no

How much time we can wait to establish VirusTotal connection and get the
report.

timeout = 60

Enable this option if you want to submit files to VirusTotal not yet available
in their database.

NOTE: if you are dealing with sensitive stuff, enabling this option you could
leak some files to VirusTotal.

scan = no

Add your VirusTotal APl key here. The default API key, kindly provided

by the VirusTotal team, should enable you with a sufficient throughput

and while being shared with all our users, it shouldn't affect your use.

key =
a0283a2c¢3d55728300d064874239b5346fb991317e8449fe43c902879d758088

[irma]

enabled = no

IRMA @ github : https://github.com/quarkslab/irma

How much time we can wait to establish IRMA connection and get the report.
timeout = 60

Enable this option if you want to submit files to IRMA not yet available.

scan = no
Force scan of submitted files
force = no

URL to your IRMA installation

For example : https://your.irma.host

url =

Probes to use on your IRMA instance

If not specified, will default to using all available probes

Expects comma separated list

For example : ClamAV,F-
Secure,Avast,ESET,eScan,Avira,Sophos,McAfee,Kaspersky,GData,Comodo,Bitdef
ender

probes =

reporting.conf

$CWD/conf/reporting.conf dosyasl, rapor olusturma ile ilgili bilgileri icerir.

Asagidaki gibidir:

Enable or disable the available reporting modules [on/off].

If you add a custom reporting module to your Cuckoo setup, you have to add
a dedicated entry in this file, or it won't be executed.

You can also add additional options under the section of your module and

they will be available in your Python class.

[feedback]

Automatically report errors that occurred during an analysis. Requires the
Cuckoo Feedback settings in cuckoo.conf to have been filled out properly.
enabled = no

[jsondump]
enabled = yes
indent = 4
calls = yes

[singlefile]
Enable creation of report.html and/or report.pdf?

enabled = no

Enable creation of report.html?
html = no

Enable creation of report.pdf?
pdf = no

[misp]
enabled = no
url =

apikey =

The various modes describe which information should be submitted to MISP,
separated by whitespace. Available modes: maldoc ipaddr hashes url.
mode = maldoc ipaddr hashes url

distribution = 0
analysis = 0
threat_level = 4

The minimum Cuckoo score for a MISP event to be created
min_malscore = 0

tag = Cuckoo
upload_sample = no

[mongodb]

enabled = no

host = 127.0.0.1

port = 27017

db = cuckoo

store_ memdump = yes

paginate = 100

MongoDB authentication (optional).
username =

password =

[elasticsearch]

enabled = no

Comma-separated list of ElasticSearch hosts. Format is IP:PORT, if port is
missing the default port is used.

Example: hosts = 127.0.0.1:9200, 192.168.1.1:80

hosts = 127.0.0.1

Increase default timeout from 10 seconds, required when indexing larger
analysis documents.

timeout = 300

Set to yes if we want to be able to search every API call instead of just

through the behavioral summary.

calls = no

Index of this Cuckoo instance. If multiple Cuckoo instances connect to the

same ElasticSearch host then this index (in Moloch called "instance") should
be unique for each Cuckoo instance.

index = cuckoo

Logging time pattern. This sets how elasticsearch creates indexes
by default it is yearly in most instances this will be sufficient

valid options: yearly, monthly, daily

index_time_pattern = yearly

Cuckoo node name in Elasticsearch to identify reporting host. Can be useful
for automation and while referring back to correct Cuckoo host.
cuckoo_node =

[moloch]

enabled = no

If the Moloch web interface is hosted on a different IP address than the
Cuckoo Web Interface then you'll want to override the IP address here.
host =

If you wish to run Moloch in http (insecure) versus https (secure) mode,
set insecure to yes.

insecure = no

Following are various configurable settings. When in use of a recent version
of Moloch there is no need to change any of the following settings as they
represent the defaults.

moloch_capture = /data/moloch/bin/moloch-capture

conf = /data/moloch/etc/config.ini

instance = cuckoo

[notification]

Notification module to inform external systems that analysis is finished.
You should consider keeping this as very last reporting module.
enabled = no

External service URL where info will be POSTed.
example : https://my.example.host/some/destination/url
url =

Cuckoo host identifier - can be hostname.
for example : my.cuckoo.host
identifier =

[mattermost]
enabled = no

Mattermost webhook URL.
example : https://my.mattermost.host/hooks/yourveryrandomkey
url =

Cuckoo host URL to make analysis ID clickable.
example : https://my.cuckoo.host/
myurl =

Username to show when posting message
username = cuckoo

What kind of data to show apart from default.
Show virustotal hits.
show_virustotal = no

Show matched cuckoo signatures.
show_signatures = no

Show collected URL-s by signature "network_http".
show_urls = no

Hide filename and create hash of it
hash_filename = no

Hide URL and create hash of it
hash_url = no

Revision #1
Created 25 December 2023 09:04:27 by Ertan Sozer
Updated 25 December 2023 09:10:20 by Ertan Sozer

